
International Journal of Business and Management Invention 

ISSN (Online): 2319 – 8028, ISSN (Print): 2319 – 801X 

www.ijbmi.org Volume 2 Issue 6ǁ June. 2013ǁ PP.33-40 

www.ijbmi.org                              33 | P a g e  

Bayesian Hierarchical Regression (Generalized Linear Model) 

Analysis of US State-Specific Non-Violent Crime
1
 

Xiaolu Wang 

Graduate student, Economics Dept. Duke University, Durham, NC, USA 

 

ABSTRACT: I developed both an OLS and a Bayesian model to predict US state-specific non-violent crime rates. Based 

on Economic theories and the characteristics of my highly multi-collinear and endogenous data, I first tried Stochastic 

Search Variable Selection (SSVS) in variable selection. I found some problems, and then I used Principal Component 

Analysis (PCA) and Factor Analysis (FA) to help select variables and did a box-cox transformation to develop a generalized 

linear regression (assuming homogeneity). Then I developed a Bayesian hierarchical regression model (allowing 

heterogeneity), which fit the data much better. After checking the convergence and shrinkage, I also conducted model 

diagnostic tests to compare the difference in the two models. Further normal mixture, clustering, and comparison with 

frequentist hierarchical regression are tried without concrete results. These results about heterogeneity in different states can 

be used as an inference indicator for commercial crime rate insurance, which usually uses frequentist method in crime rate 

prediction and related actuarial pricing, instead of more scientific Bayesian analysis. 
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I. RESEARCH FOCUS AND DATA DESCRIPTION 

 We are interested in the following questions: (1) How to predict state-specific crime rates using social-economic and 

demographic data? (2) How to develop a generalized linear mixed effect model with strong support in economics and using 

fancy statistical method? (3) Whether there are obvious state-specific crime characteristics, and how to visualize the 

difference? (Heterogeneity in both regression coefficients and residual terms)In order to explore a good model to answer the 

questions above, I’m going to: (1) Conduct a simple data mining uses both Bayesian and frequentist methods: SSVS, PCA 

and FA, compare and make sure the variables are supported by economic theory; (2) Construct a generalized linear model; (3) 

using bayesian hierarchical method to handle state-specific characteristics: estimate/approximate interested parameters, 

check shrinkage and convergence, and check heteroskedasticity.  

Table.1 summary of communities and crime unnormalized data
2
 

Number counting Interested Dependent variables Data cleaned

instances 2215 Observed Missing response: nonViolent Crimes / 101k population

attributes 147 Violent # 1994 221 check : identiable GLM predictors: 101 (potential)

Missing not M(C)AR nonViolent 2118 97 instances: 1884 total; numbers vary across states

normlized NO Both 1902 5 characters: most multicollinear,some endogenous  

 My dataset is a typical unnormalized demographic and socio-economic data, which is nasty yet amazing. It combines: 
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 Raw data and description is available at the Machine Learning Department at UCI, online link is: 

http://archive.ics.uci.edu/ml/datasets/communities+and+crime+unnormalized. 

http://archive.ics.uci.edu/ml/datasets/communities+and+crime+unnormalized
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demographic and socio-economic data from the '90 Census, law enforcement data from the 1990 Law Enforcement 

Management and Admin Stats Survey, Crime data from the 1995 FBI UCR. Number of observations varies a lot across 

different states. Some state has only one observation (Washington DC), some states have more than hundred observations: 

California (CA) has 278 observations. So there are strong potential identification problems for the preliminary development 

of a reliable Generalized Linear Model (GLM).And the difference in unit and scale need some transformation of the raw data 

in order to fit a GLM scientifically. 

 Strong correlations among many potential predictors (e.g., household income and per capita income, ρ=0.9), indicating 

strong multicollinearity. There are also many potential endogenous variables and unobserved effects, which can harm 

regression assumptions but cannot be detected by pure statistic method. 

 Unnormalized data is relatively more complicated to handle in doing project. But normalization will make 

interpretation less intuitive, and in my case, in order to keep rich economic flavor, I didn’t normalize it. The response 

variable that I finally choose is the per capita nonviolent crime, which was calculated using the sum of crime variables 

considered non-violent crimes in the United States: burglaries, larcenies, and auto thefts and arsons. (There are many other 

types of crimes; these only include FBI 'Index Crimes') 

II. MODEL DEVELOPMENT AND APPROACH 

2.1. Model Selection and Preliminary Linear Regression 

I originally used a Stochastic Search Variable Selection(SSVS) to do the variable selection, but since there are 2101 potential models 

with highly collinear variables, SSVS works badly, cannot reduce the dimension effectively, and include some bad endogenous variables. So 

I go back to use exploratory data analysis tools-Principal Component Analysis (PCA)&Factor Analysis (FA)to reduce the dimension by 

projecting variables to some components (make a rotation)and selected variables that both significant in economics and statistics. I further 

conducted a Box-Cox Transformation to modify the unnormalized data and fit the model. Then I checked the rank condition to ensure GLM 

identifiability for all the groups (states) in Hierarchical Regression afterwards. The final generalized linear model that I developed (based on 

economic theory and statistic method) is:3 
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Now we have explanatory variables on: population, population density, per capita income, education, divorce rate, 

family effect. This makes tremendous sense in economics and public policy. So we got strong theoretical foundation now, 

and the derived predictive model would probably have robust-inference for policy decisions.  

This generalized linear model can be simplified as: 
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2.2. Bayesian Hierarchical Generalized Linear Regression Model 

Data (Likelihood)： 

. .
2 2~ ( , ) : , 1,2,..., 38

i i d

ij ij j j j jy N X parameters of interest where j m            

(1) Prior choice: “borrow” information from the data (across different groups (states): here I have 38 states!!!) 

                                                             
3
The biggest econometric problem that I cannot totally solve now is unobserved effect. But based on all the 

statistical inferences, the unobserved effect is already controlled to a desirable level.  
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 Bayesian regression with weak but unbiased prior information (OLS estimate). 

(2) Posterior Distribution Derivation: 
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(3) Get full conditional distribution of 
2, , ,j j    

1

1 1

1 1 1

, ,..., ~ - ( , )

ˆˆ( )

ˆ( )

m m m

m m

m

mvt Normal

m
where

m

   

   

  

 

    

    
    

   

1

1

1

ˆ, ,..., ~ (4 ,[ ] )

( )( )

m

Tm

j jj

Inv Wishart m S

where S

  

   





    

      
 

2

0 0

1

0 0 2

1 1

0 2

, ,1 , , ~ - ( , )

( )

( )

j j

T

j j

j

T

j j

j

X Y mvt Normal

X Y

where
X X

   

 






 

 

   

   

    

 

2 2

1 0 0

0

2

0 0

, , ,..., , , , , ~ ( , )

( )

2

[ ( ) ( )]

2

j m j j

j

j

T

j j j j j j

j

v X Y Ga a b

v n
a

where
v Y X Y X

b

    

  









  




                   

 

       

 

III. CONCRETE APPROACH: MARKOV CHAIN MONTE CARLO 

MCMC methods are implemented. More concretely, use Gibbs Sampler for all the parameters with conditional 

distribution derived above, I run 50000 iterations and only use the last 10000 iterations as effective “post burn-in” simulation 

samples. I did this in order to guarantee a good convergence and make the result more reliable. An interesting “extra take 

away” in developing this model is that: I originally try to update v0 and sigma0
2 too, using Metropolis-Hastings Algorithm 

(Metropolis random walk) for v0and MC sample from inverse-Gamma forsigma0
2. However, it’s hard to pin down the range 

for v0 and guarantee sigma0
2 is smaller than the total variance of the data (y). (The ACF and traceplots for sigma0

2 are 

horrible!) After several trails and fails, I finally successfully make it work well by fixing both the values as non-informative 

hyper-priors. 

3.1. Extensions: Mixture, Cluster, and Comparison with Frequentist Hierarchical
4
 

There are many fantastic extensions that I tried, even though I didn’t get satisfactory results. Since my main 

model is a hierarchical generalized linear regression model, I extended it as follow: 

(1) To capture outliers by using a scale-mixture of two normal distributions for the error term. First, draw probability 

weights for the two components (two normal distributions) from a Dirichlet distribution, and then incorporate them to build 

a scale-mixture of Gaussians. This modification can mimic/fit the data better by capturing the outliers. In this case, the 

outliers will be “thrown” into the normal component with larger variance.  

(2) Another possible thinking is to do some clustering. Since now I have 38 groups in the hierarchical generalized 

regression analysis (group based on different states), it is intuitively reliable to make some clustering for the 38 states (e.g., 

using hierarchical clustering method, or just based on typical Euclidian distance).  

(3) A third possible thought is to increase the credibility of prediction by using time series data. Here it’s just my 

general thinking, not necessarily on this problem, since this highly relies on your data. 

(4) Compare frequentist hierarchical regression model vs. bayesian hierarchical regression model: I attempted to 
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They are now work as “further research”, due to strong time conflicts and constrain. I’ve tried most of them.  
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build a frequentist hierarchical model and compare it with the bayesian one, using the R packages lmer4 and nlme. However, 

I cannot make them work well for my data. I also tried some simple cross-section validation by running a simple “naïve 

regression” using only the training data in CA, and predict MLE for the 50 testing values. The Mean Square Prediction Error 

(MSPE) for the Bayesian model is smaller than the corresponding one for simple linear regression. Yet, it’s not very 

scientific to compare a hierarchical result with a pure non-hierarchical linear regression using single group data. 

IV. RESULTS SUMMARY 

4.1. Model Diagnostics Test:  

The residual diagnostic tests show us: the hierarchical regression residual fit the normal assumption better, 

especially when we use the transformed plot in the third graph. 

 

 

Figure.1 model diagnostic test (QQ plot): for OLS(1) and hierarchical residuals (2&3) 

4.2. Convergence Check: ACF and Traceplot 

As we see, the auto-correlation functions for the seven posterior thetas are all look nice, with ACFs 

jump to 0 around lag 10. And the traceplots for all the seven posterior thetas are nice as well, with nice static 

convergence after throwing away the burn-ins. (10000 posterior simulations after 40000 burn-ins).  
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Figure.2convergence check: ACF for posterior thetas 

 

Figure.3 convergence check: traceplots for posterior thetas 

 

As it was shown in Figure.2-3, the ACF and Traceplots for all the thetas perform well. Now I display the 

posterior inferences below. Output for all seven betas and 6 sigma
2
 (out of 38 groups) are reported. As we can 

see from table.2, all the 95% Confidence Interval and 95% HPD interval cover 0; and the ranges are rather large, 

indicating heterogeneity across different states. We can further check this in Figure.3. 

Table.2 summary of posterior inferences for beta 

 mean 95% credible interval 95% HPD interval 

 7.38061848 -5.54665647 21.03542371 -5.67429699 20.88633312 

 0.01527041 -0.04756808 0.07637843 -0.04676158 0.07715483 

 0.06000084 -0.08447064 0.18038883 -0.07721382 0.18659419 

 -0.06725023 -0.26589530 0.08984892 -0.26096499 0.09410068 

 0.14923470 -0.22155682 0.47743207 -0.21350488 0.48449148 

 -0.39684236 -1.61310163 0.82974282 -1.60200393 0.83918587 

 0.13917707 -0.38717285 0.72168719 -0.38255008 0.72562964 

Table.3posterior inferences for  in 6 groups (out of 38 states) 

 mean 95% credible interval 95% HPD interval 

 0.8159499 0.3778829 1.6952233 0.3176422 1.5097465 

 1.7064460 0.9204576 3.0483144 0.8200803 2.8180583 
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 0.4362865 0.2187859 0.8547357 0.1910964 0.7667413 

 0.4270706 0.3602668 0.5037091 0.3597551 0.5027664 

 0.4502799 0.2474726 0.8080682 0.2280811 0.7528439 

 0.5360850 0.3792335 0.7613718 0.3602619 0.7307799 

From table.3, we can have a deeper look at the state-specific (within group) variance, and found that the 

mean and CI, HPD of them are so different, confirm our belief in state-specific variance/effects. Since not even 

a single pair of states has the same or much closed variance, it seems true that we should admit strong 

heteroskedasticity in our case, among the 38 different states. 

4.3. Shrinkage Check& Heteroskedasticity Check 

 

Figure.3 shrinkage check: probability density distributions of posterior thetas 

The posterior deviation for theta is much more concentrated than the prior Ordinary Least Square (OLS) 

estimates, as it was shown in Figure.3. So, we obtained smaller Mean Square Error (MSE) from the posterior 

estimates. Thus, we gain evidence that Bayesian hierarchical regression model did much better than the OLS 

priors since the estimates go closer to the true parameter values. Shrinkage estimate is very popularly used in 

Bayesian analysis, and it can usually give you stronger prediction power. 

 

Figure.4 Heterogeneity in regression coefficients 

In Figure.4, all posterior means showed much more variance than corresponding prior means (the same red 

one).This is quite reliable since it matches our heterogeneity analysis before. 
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Figure.5 heteroskedasticity in hierarchical group variances 

Sigmag
2
 for different states show quite different posterior densities in Figure.5. Obvious heteroskedasticity again 

provide evidence that a Bayesian hierarchical regression performs much better than using a simple OLS method 

by assuming homogeneity.  

4.4. Prediction for Decision 

Obtain coefficients for state-specific predictive models. We can directly see the heterogeneity. I’ve 

approximated coefficients for all the 38 states, here I choose 4 of them to display. (For example, you want to 

choose relatively safer places to live or to apply for a PhD program there) 

Table.3 approximated coefficients for state-specific predictive models 

Estimate of 

 

California 

(CA) 

Massachusetts 

(MA) 

North Carolina 

(NC) 

Pittsburgh 

(PA) 

 9.734732826 10.036811094 6.34207986 6.08510760 

 0.006498597 -0.001816541 0.01412628 0.01941027 

 0.098004382 0.104080608 0.02852369 0.12665660 

 -0.071662298 0.026416059 -0.05685982 0.01930357 

 0.219581726 0.269747044 0.18038866 0.17331998 

 -0.661732038 -0.889825003 -0.27940858 -0.20035850 

 0.028475190 0.152349597 0.14041911 -0.11676510 

V. RESULTS AND CONCLUSIONS 

Answering the several questions I rose at the beginning. I conclude them as follow: 

(1) In variable selection and model building. I tried SSVS, PCA and FA together to conduct a conservative   data mining. 

Due to the special dataset I have, I need to reduce the dimensions, try to avoid endogeneity problems and match related 

economic theories. There are some trade-off between fancy and accuracy. And I finally chose the smallest number of 

variables in a nested model, that can best explain/predict log(non-ViolentCrimeRate/100kpopulation). 
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(2) In comparing the preliminary generalized linear model, and the bayesian hierarchical regression model: 

The use of a weak but unbiased prior (OLS estimate) is not only nice for policy reasons, but also make it easier to 

compare the results from frequentist to bayesian by just comparing the prior and posterior. 

I confirmed my “educated guess” about the heterogeneity of crime determination in different states, instead of the 

super strong assumption of homogeneity and homoscedasticity among all the states in GLM. 

The accuracy of MLE estimate is constrained by the limited information (observations) in several states. Bayesian 

hierarchical regression did pretty well by borrowing information from all the data, and so we get shrinkage estimates, which 

are very good for prediction. 

(3) In other extensions: The trial of a more scientific comparison between frequentist hierarchical regression model and 

bayesian hierarchical regression model, even though not complete, gave me some interesting flavor of the advantage of 

bayesian approach. 

 Some of my preliminary try of model mixture and cluster gave me new dimensional thinking about the resourceful 

application of bayesian method in dealing with real world research topics. And I’m happy and excited to explore more in the 

further. 

(4) All these discussed above showed good ideas and practice for the design of a more scientific commercial crime 

insurance. The application of bayesian hierarchical model could be more interesting and intriguing than the general 

application of frequentist hierarchical model and simple regression by state. So I recommend insurance companies to take 

more detailed consideration to the usage of bayesian analysis in their pricing processes. 
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* Stata code for data clearing and R code for Bayesian hierarchical regression are available upon request via 

email: Xiaolu.wang@duke.edu. Many delicate steps are involved, and can be derived from the introduction part, 

by dealing with all the data problems (e.g., missing not at random (not MAR or MCAR), and identifications 

check). Welcome to discuss. 
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