
International Journal of Business and Management Invention (IJBMI)  

ISSN (Online): 2319 – 8028, ISSN (Print): 2319 – 801X 

www.ijbmi.org || Volume 8 Issue 04 Series. V || April 2019 || PP 77-83 

        www.ijbmi.org                                                                77 | Page 

Quality Control and Outliers in Manufacturing Processes 
 

Claude R. Superville, PhD, FRSS, FIMA 
Texas Southern University JHJ School of Business Houston, TX 77004 

 

ABSTRACT : Manufacturing processes that consist of time series data are frequently monitored by forecast-

based quality control schemes. These control schemes are based on the application of a time series forecast to 

the process and monitoring the resultant forecast errors with a control chart or tracking signal. This study 

compares the performance of the Individuals control chart, the Cumulative Sum (CUSUM), the Exponentially 

Weighted (EWMA) chart, the Smoothed Error (ETS) and Cumulative Sum (CTS) tracking signals in their ability 

to detect the presence of additive outliers in an autocorrelated process.  The Individuals chart offers the 

greatest probability of early detection of an additive outlier in an autocorrelated process, based on the CDF 

criterion. 
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I. INTRODUCTION 
The occurence of large unusual observations is not uncommon in time series data. These outliers may 

be due to recording errors or to one-time unique situations such as an unexpected change in demand for a 

product or a change in a production system. Fox (1972) defines two types of outliers may occur in practice. An 

additive outlier corresponds to an external disturbance that affects the value of a single observation. An 

innovational outlier refers to an internal disturbance that changes the value of an observation and all other 

successive observations. Typically, in process control environments, monitoring schemes are compared based on 

their ability to detect step shifts or innovational outliers in the level of a process. However, which monitoring 

scheme detects the presence of an additive outlier most quickly is also of interest.  

Autocorrelation implies the existence of a relationship between consecutive observations and can be of 

two types. A process that tends to drift over time is characteristic of positive autocorrelation and results when 

successive observations are similar in value. Negative autocorrelation is depicted by a sawtooth pattern and 

results when consecutive observations are dissimilar. High volume manufacturing processes along with an 

increased frequency of sampling by automated gages, gives rise to autocorrelated data.         

The presence of autocorrelation creates unique problems for process monitoring schemes. Positive 

autocorrelation tends to increase the frequency of out-of-control signals that are detected by monitoring schemes. 

Positive autocorrelation occurs most often in production environments and chemical operations (Woodall and 

Faltin (1993)).     

In the field of statistical process control (SPC), control charts have traditionally been used to monitor 

production processes.  In the forecasting and time series fields, tracking signals perform a similar function, the 

monitoring of forecasting systems. The statistical tools are similar in that both are designed to monitor systems 

and provide information concerning changes in the systems.   

Alwan and Roberts (1988) have proposed a method for monitoring autocorrelated data that involves the 

application of a time-series forecast to the process and monitoring the forecast errors. Unusual behavior in the 

process should result in a large error that is reflected as a signal on a control chart or tracking signal.  

Traditionally, monitoring tools have been compared on the basis of Average Run Lengths (ARLs). The 

ARL is the expected  number of observations required to detect an out-of-control situation. However, simple 

exponential smoothing forecasts recover quickly from step increases in the time series process that it monitors. 

This would suggest that the performance of forecast-based schemes should be based on the probability of "early 

detection". As an average measure that is inflated by long run lengths, the ARL is an inadequate measure of 

quick recovery, that is characterized by short run lengths. Hence the cumulative distribution function (CDF) of 

the run lengths is offered as an alternative criterion to the average run length (ARL) for the selection of an 

appropriate monitoring scheme. The CDF provides the cumulative probability of a signal occuring by the ith 

time period after a disturbance.  

This paper compares the performance of tracking signals and control charts in monitoring residuals 

from exponential smoothing forecasts applied to autoregressive process data of order one, denoted by AR(1), in 
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the presence of additive outliers. The study shows that the Individuals control chart offers the highest probability 

of early detection of an additive outlier in AR(1) processes. 

 

II. LITERATURE REVIEW 
The presence of autocorrelation creates unique problems for process monitoring schemes. Positive 

autocorrelation tends to increase the frequency of out-of-control signals that are detected by monitoring schemes. 

Positive autocorrelation occurs most often in production environments and chemical operations (Woodall and 

Faltin (1993)).   

The performance of control charts in the presence of autocorrelation has been explored by a number of 

authors. Superville and Adams (1994) compared the performance of an Individuals Chart, a Cumulative Sum 

(CUSUM) and Exponentially Weighted Moving Average (EWMA) Chart in their ability to detect step shifts in 

autocorrelated process. Superville and Adams (1995) compared the performance of these charts to tracking 

signals in their ability to detect step shifts in autocorrelated process. Lu and Reynolds (1999) suggest the use of a 

combined Shewhart-EWMA for autocorrelated data. Lianjie, Daniel and Fugee (2002) suggest the use of a 

triggered CUSCORE on residuals. Lee et al. (2009) propose distribution-free charts for monitoring shifts in the 

mean of autocorrelated processes. Wu and Yu (2010) advocate a neural network approach for monitoring the 

mean and variance of an autocorrelated process. Chang and Wu (2011) suggest a Markov Chain approach to 

calculating the ARL for control charts on autocorrelated process data. 

In the field of statistical process control (SPC), control charts have traditionally been used to monitor 

production processes.  In the forecasting and time series fields, tracking signals perform a similar function, the 

monitoring of forecasting systems. The statistical tools are similar in that both are designed to monitor systems 

and provide information concerning changes in the systems.   

Alwan and Roberts (1988) have proposed a method for monitoring autocorrelated data that involves the 

application of a time-series forecast to the process and monitoring the residuals. Unusual behavior in the process 

should result in a large error that is reflected as a signal on a control chart or tracking signal.  

Traditionally, monitoring tools have been compared on the basis of Average Run Lengths (ARLs). The 

ARL is the expected  number of observations required to detect an out-of-control situation. However, simple 

exponential smoothing forecasts recover quickly from step increases in the time series process that it monitors. 

This would suggest that the performance of forecast-based schemes should be based on the probability of "early 

detection". As an average measure that is inflated by long run lengths, the ARL is an inadequate measure of 

quick recovery, that is characterized by short run lengths. Hence the cumulative distribution function (CDF) of 

the run lengths is offered as an alternative criterion to the average run length (ARL) for the selection of an 

appropriate monitoring scheme. The CDF provides the cumulative probability of a signal occurring by the ith 

time period after a disturbance.  

       

III. A MODEL FOR AUTOCORRELATED DATA 
A time series model that has been found to be useful in production and quality control environments is the 

ARIMA(1,0,0), referred to as the first-order autoregressive model and denoted by AR(1). It is represented by 

 

          Xt =  + Xt-1 + t .                                                                           (1) 

 

Without loss of generality it is assumed that t ~  N(0,1). It is also assumed that an AR(1) model is applicable in 

this article. Montgomery and Mastrangelo (1991) show that a number of chemical and manufacturing processes 

conform to this model.   

      The simple exponential smoothing forecast, also known as an exponentially weighted moving average 

(EWMA) forecast is given by 

 

Ft+1 = FXt + (1-F)Ft  ,                   0 F 1 .                      (2)  

       

where Xt represents the process observation at time period t, and Ft+1  represents the one-step-ahead forecast for 

observation Xt+1 at time period t.  The forecast error at time period t, denoted by et, is defined as 

 

   et = Xt - Ft.                                                                                 (3) 

 Alwan and Roberts (1988) have observed that processes that do not drift too rapidly are well modeled 

by simple exponential smoothing. For the AR(1) model, Cox (1961) has shown that optimal simple exponential 

smoothing in terms of minimum mean square forecast error is given by 

 

 
F

=1–  ½[(1- ) / ] ,         1 /3  <     1      (4) 
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where  is the parameter of the AR(1) process. The simulation study on which this article is based, rely on this 

result. 

 

IV. FORECAST-BASED QUALITY CONTROL SCHEMES 
 In this study, the Individuals, Cumulative Sum (CUSUM) and EWMA control charts and the Smoothed 

Error (ETS) and Cumulative Sum (CTS) tracking signals are applied to exponential smoothing forecast errors 

and their performances evaluated. 

 

4.1 The Individuals Control Chart 

The Individuals control chart applied to forecast errors requires an estimate of the variance of the forecast errors.  

Defining the ith moving range to be 

 

      MRi = ei-ei-1 ,          i =2, 3,...,m                              (5)  

and 

     MR MR
m

i
i

m


 


1

1 2

,                                (6)  

 

the control limits are 

                              

                     X   C1MR/d2                 (7)  

 

where the constant C1 is set to achieve a desired in-control ARL. Montgomery (1991) has tabulated values for 

C1 and d2. 

 

4.2 The Cumulative Sum Control Chart 

 An alternative to the Shewhart control chart is the Cumulative Sum (CUSUM) control chart.  The 

CUSUM control chart may be represented by either a V-mask representation or equivalently by the use of two 

one-sided cumulative sums. 

The V-mask form of the CUSUM applied to forecast errors requires plotting the quantity  

              S e ii j
j

i
  

1
1 2, , , ...                  (8)  

against the sample number i.  

The 'two one-sided cumulative sums' procedure also known as the Tabular CUSUM requires calculating: 

   

 S e K Si i e i   max , ( )0 1                           (9)  

 

         T e K Ti i e i   min , ( )0 1            (10)  

 

 where S
0 

= w and T
0

= –w(0w<K).  The value e represent the standard deviation of the forecast errors, 

which is typically estimated in practice.  A head start value, w, is recommended for earlier detection of out of 

control situations. In this study w = 0 is used. The reference value K is usually set to be /2, where  is the 

smallest shift in the mean (measured in forecast  error standard deviations) considered important to be detected 

quickly.  If Si > h or Ti < -h (where h is a critical value) the chart signals. The critical values, h used in this study 

were determined through simulation. 

 

4.3 The Exponentially Weighted Moving Average Control Chart 

 The Exponentially Weighted Moving Average (EWMA) control chart is another alternative to the 

Shewhart control chart that has been found to be more sensitive to small process disturbances. Also known as a 

Geometric Moving Average control chart, the EWMA applied to forecast errors is a weighted average of past 

and present data given by 

 

                Zi = ei + (1-)Zi-1 ,      i =1,2,...                                                 (11) 
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where (0 <  <1) is a smoothing constant and Z0 = 0 usually. Assuming that the process is in control and the 

observations are independent then 

        

        2      

   2
Zi =         [1-(1- )2i]                       (12)    

        n   2 -  

                               

with control limits determined by 

 

  X  cZi                                                   (13)  

 

where c is a constant designed to achieve a desired in-control ARL.  The value of c required for this study was 

determined through simulation.  Note if = 1, the EWMA control chart becomes a Shewhart control chart.        

 

4.4 The Smoothed Error Tracking Signal 

Trigg's (1964) Smoothed Error (ETS) tracking signal is given by 

 

ETSt = Et / MADt                                                                         (14) 

where 

Et = 1et + (1-1)Et-1 ,                                        0 1 1                 (15) 

and 

MADt = 2et + (1-2)MADt-1 ,                          0 2 1 .             (16) 

 

Typically, E0 = 0 and MAD0 is set equal to its expected value which is approximately equal to 0.8e (where e 
is the standard deviation of the forecast errors). A signal occurs if ETSt exceeds a critical value K1. Gardner 

(1983) suggests that the value of K1 should be set to achieve a desired in-control ARL. 

 

 4.5  The Cumulative Sum Tracking Signal  

Brown's (1959)  Cumulative Sum (CTS) tracking signal is given by 

 

CTSt = SUMt / MADt                                                           (17) 

where 

SUMt = et + SUMt-1 .                                                               (18) 

 

The value of MAD0 is set equal to its expected value as with ETS0. The value of  SUM0 is set equal to 

zero.  A signal occurs if the value of CTSt exceeds a critical value K2.  Gardner (1983) suggests that the value of  

K2 should be set to achieve a desired in-control ARL. 

Concerning the choice of parameters for the forecast model (F), and tracking signals (1 and 2), 

McKenzie (1978) and Gardner (1985) recommend that F 1, with 1= 0.1 commonly used in practice. Small 

values of 1 allow the ETS to respond more quickly to small disturbances in the demand process. Traditionally, 

the smoothing parameters in the numerator and denominator of the ETS have been set equal to each other, that 

is, 

 1=2. More recently, McClain (1988) has suggested that the smoothing parameter in the MAD,2, be smaller 

than the parameter in the numerator, 1, so that the variance of the forecast errors may be stabilized.  

 

V.  PERFORMANCE COMPARISONS: ARL vs. CDF 
 Concerning forecast recovery in the presence of additive outliers, consider an exponential smoothing 

forecast applied to an AR(1) process in which an additive outlier occurs in the process. Figure 1 shows a 

sequence of fifty observations from an AR(1) process (with  = 0.9) and the optimal exponentially smoothed 

forecasts (with F= 0.9444). Figure 2 displays the resulting forecast errors. 

 At time period 31, a step increase in the level of the time-series occurs. The forecast lags behind the 

observed data at time period 32 resulting in a large forecast error. By time period 33, the forecast has adjusted to 

the new level of the process. The forecast errors have returned to values close to zero, as they were prior to the 

step increase. Notice that the 'window of opportunity' available for detection of this time-series disturbance is 

quite small.   

  The use of the cumulative distribution functions (CDF) as an evaluation criterion is not new. Barnard 

(1959), Bissell (1968) and Gan (1991) recommend its use for control charts on independent observations. 
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Referred to as a  'response to a change in demand', McClain (1988) advocates its use for forecast-based schemes 

which incorporate tracking signals. The CDF measures the cumulative percentage of disturbances in a time series 

that are detected early.   

  Five monitoring schemes were compared by simulation. They are the ETS, CTS, EWMA, CUSUM 

and the Shewhart Individuals control charts. ARLs and CDFs are provided for each monitoring scheme for 

outliers of size 3.0p, where 2
p= 2/ (1-2), is the variance of an AR(1) process.  

 The CUSUM control chart was designed to detect a shift of 1, with the reference value k = 0.5. The 

EWMA control chart was constructed with  = 0.10, for quick detection of small disturbances as suggested by 

Montgomery (1991, p.306). The initial value of the EWMA is set to zero, as this is the expected value of a 

forecast error, if the forecast is correct. The initial values of the smoothed-error for the ETS (equation 14) and 

the sum of errors for the CTS (equation 17) are set to zero as suggested by Gardner (1985) and McClain (1988). 

The smoothing constants 

 1and 2 were set to 0.10 as suggested by McKenzie (1978). Further details on the simulation study are 

available on request from the author.  
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Figure 1. Observations from an AR(1) process with  = 0.9 and exponentially smoothed forecasts with  = 

0.9444. An additive outlier of size 3p occurs at observation 31. 
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Figure 2. Forecast Errors from an AR(1) process with  = 0.9 and exponentially smoothed forecasts with  = 

0.9444. An additive outlier of size 3p occurs at observation 31. 

 



Quality Control And Outliers In Manufacturing Processes 

        www.ijbmi.org                                                                82 | Page 

VI. RESULTS AND IMPLICATIONS 

 ARLs and CDFs for the Individuals, CUSUM, and EWMA control charts and the ETS and CTS 

tracking signals applied to the optimal exponential smoothing forecast errors from an AR(1) process with  

ranging from 0.0 to 0.9 are shown in Table 1. Outliers are simulated as 3p.  

The results can be summarized as follows: 

1.  With the exception of the case where =0.9, the magnitude of the ARLs for the autocorrelated cases (>0) are 

significantly larger than for the independent case (=0). The difference in ARL magnitudes can be attributed to 

the quick  recovery of the EWMA forecast. Recall that the ARL, as an average measure, is inflated by long run 

lengths. It is unable to adequately reflect short run lengths that are indicative of quick forecast recovery. For 

forecast-based schemes, ARLs are not informative.  

2.  Based on CDFs, the Individuals control chart provides a higher probability of early detection of an outlier for 

the autocorrelated cases where =0.5 and 0.7. This occurs although the Individuals control chart may have a 

longer ARL than any other monitoring scheme. As an example, consider the case where =0.5. The Individuals 

control chart provides a higher probability of early detection on the first observation after the outlier (60.5%) 

despite having a longer ARL (92.7) than the other monitoring schemes. The detection of an outlier early, that is, 

within the first few observations after the occurance of an outlier is critical since the forecast recovers quickly. 

This suggests the use of the Individuals control chart for the autocorrelated cases. 

 

VII. CONCLUSIONS 
 This paper has compared forecast-based quality control schemes  for monitoring autocorrelated 

observations in the presence of additive outliers. The quick recovery property of  forecasting tools suggests that 

comparisons of control charts and tracking signals applied to forecast errors be based on the CDF on the run 

lengths and not on the ARL. The Individuals control chart is recommended over the CUSUM and EWMA 

control charts and the Smoothed Error and CUSUM tracking signals as it offers the highest probability of early 

detection of an additive outlier in an AR(1) process. 

 

TABLE I. Average Run Lengths and Percentage of Signals detected by the ith observation after an outlier of 

size 

3p. Residuals are from AR(1) processes with autoregressive parameters  and an in-control ARL of 250. 
 Monitoring 

Scheme 

   ARL Number of time periods after an outlier 

    1                2               3               4              5            6     
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